A combined network model for membrane fouling.
نویسندگان
چکیده
Membrane fouling during particle filtration occurs through a variety of mechanisms, including internal pore clogging by contaminants, coverage of pore entrances, and deposition on the membrane surface. Each of these fouling mechanisms results in a decline in the observed flow rate over time, and the decrease in filtration efficiency can be characterized by a unique signature formed by plotting the volumetric flux, Q^, as a function of the total volume of fluid processed, V^. When membrane fouling takes place via any one of these mechanisms independently the Q^V^ signature is always convex downwards for filtration under a constant transmembrane pressure. However, in many such filtration scenarios, the fouling mechanisms are inherently coupled and the resulting signature is more difficult to interpret. For instance, blocking of a pore entrance will be exacerbated by the internal clogging of a pore, while the deposition of a layer of contaminants is more likely once the pores have been covered by particulates. As a result, the experimentally observed Q^V^ signature can vary dramatically from the canonical convex-downwards graph, revealing features that are not captured by existing continuum models. In a range of industrially relevant cases we observe a concave-downwardsQ^V^ signature, indicative of a fouling rate that becomes more severe with time. We derive a network model for membrane fouling that accounts for the inter-relation between fouling mechanisms and demonstrate the impact on the Q^V^ signature. Our formulation recovers the behaviour of existing models when the mechanisms are treated independently, but also elucidates the concave-downward Q^V^ signature for multiple interactive fouling mechanisms. The resulting model enables post-experiment analysis to identify the dominant fouling modality at each stage, and is able to provide insight into selecting appropriate operating regimes.
منابع مشابه
Study on the fouling behavior of HDPE/PE-g-MA/EVA blend membrane fabricated via thermally induced phase separation method
In this study, neat HDPE and HDPE/PE-g-MA/EVA blend membranes were fabricated via thermally induced phase separation (TIPS) method and their fouling behaviors were examined using filtration of BSA protein. Membranes were characterized using FESEM, AFM, ATR-FTIR analyses and porosity measurement. Fouling behavior of membranes was analyzed using the resistance-in-series (RIS), classic and combine...
متن کاملCombined Three Mechanisms Models for Membrane Fouling during Microfiltration
Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the success...
متن کاملFouling mechanisms during protein microfiltration: The effects of protein structure and filtration pressure on polypropylene microporous membrane performance
A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin (BSA) and collagen, in dead-end filtration setup. Obtained results showed that, for each pro...
متن کاملAdvanced Dynamic Simulation of Membrane Desalination Modules Accounting for Organic Fouling
A reliable dynamic simulator (based on a sound process model) is highly desirable for optimizing the performance of individual membrane modules and of entire desalination plants. This paper reports on progress toward development of a comprehensive model of the complicated physical-chemical processes occurring in spiral wound membrane (SWM) modules, that accounts for the...
متن کاملFouling Prediction Using Neural Network Model for Membrane Bioreactor System
Membrane bioreactor (MBR) technology is a new method for water and wastewater treatment due to its ability to produce better and high-quality effluent that meets water quality regulations. MBR also is an advanced way to displace the conventional activated sludge (CAS) process. Even this membrane gives better performances compared to CAS, it does have few drawbacks such as high maintenance cost ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 432 شماره
صفحات -
تاریخ انتشار 2014